p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.15C42, C24.47(C2×C4), (C2×C4).69C42, (C2×C42).19C4, (C22×C4).40Q8, C23.24(C4⋊C4), (C2×M4(2))⋊16C4, (C22×C4).757D4, C22.7(C2×C42), C4○(C22.C42), M4(2).29(C2×C4), C22.C42⋊26C2, (C23×C4).222C22, C23.177(C22×C4), (C22×C4).647C23, C23.116(C22⋊C4), C4.32(C2.C42), (C22×M4(2)).16C2, (C2×M4(2)).300C22, C22.13(C2.C42), C2.3(M4(2).8C22), C4.30(C2×C4⋊C4), C22.15(C2×C4⋊C4), C4.85(C2×C22⋊C4), (C2×C4).113(C2×Q8), (C2×C4).127(C4⋊C4), (C2×C4).1297(C2×D4), (C2×C22⋊C4).20C4, (C22×C4).48(C2×C4), (C2×C4⋊C4).743C22, (C2×C4).175(C22×C4), (C2×C4).115(C22⋊C4), (C2×C42⋊C2).10C2, C22.110(C2×C22⋊C4), C2.19(C2×C2.C42), SmallGroup(128,474)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.15C42
G = < a,b,c,d,e | a2=b2=c2=e4=1, d4=c, ab=ba, eae-1=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=bcd >
Subgroups: 308 in 194 conjugacy classes, 108 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C22.C42, C2×C42⋊C2, C22×M4(2), C23.15C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C2.C42, M4(2).8C22, C23.15C42
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)
(1 31)(2 28)(3 25)(4 30)(5 27)(6 32)(7 29)(8 26)(9 17)(10 22)(11 19)(12 24)(13 21)(14 18)(15 23)(16 20)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17 31 9)(2 14 32 22)(3 23 25 15)(4 12 26 20)(5 21 27 13)(6 10 28 18)(7 19 29 11)(8 16 30 24)
G:=sub<Sym(32)| (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,31,9)(2,14,32,22)(3,23,25,15)(4,12,26,20)(5,21,27,13)(6,10,28,18)(7,19,29,11)(8,16,30,24)>;
G:=Group( (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,31,9)(2,14,32,22)(3,23,25,15)(4,12,26,20)(5,21,27,13)(6,10,28,18)(7,19,29,11)(8,16,30,24) );
G=PermutationGroup([[(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20)], [(1,31),(2,28),(3,25),(4,30),(5,27),(6,32),(7,29),(8,26),(9,17),(10,22),(11,19),(12,24),(13,21),(14,18),(15,23),(16,20)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17,31,9),(2,14,32,22),(3,23,25,15),(4,12,26,20),(5,21,27,13),(6,10,28,18),(7,19,29,11),(8,16,30,24)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4R | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | M4(2).8C22 |
kernel | C23.15C42 | C22.C42 | C2×C42⋊C2 | C22×M4(2) | C2×C42 | C2×C22⋊C4 | C2×M4(2) | C22×C4 | C22×C4 | C2 |
# reps | 1 | 4 | 1 | 2 | 4 | 4 | 16 | 6 | 2 | 4 |
Matrix representation of C23.15C42 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C23.15C42 in GAP, Magma, Sage, TeX
C_2^3._{15}C_4^2
% in TeX
G:=Group("C2^3.15C4^2");
// GroupNames label
G:=SmallGroup(128,474);
// by ID
G=gap.SmallGroup(128,474);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,352,2019,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^4=1,d^4=c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d>;
// generators/relations